当前位置: 首页 > 图灵资讯 > 行业资讯> python遗传算法的优化过程是什么?

python遗传算法的优化过程是什么?

来源:图灵python
时间: 2024-12-02 19:58:20

对于题目中的算法,相信大家最喜欢,或者最常见的就是在优化领域吧,小编就看到很多大神,利用python的算法去做一些项目的优化,而大家在足够了解这个算法以后,也需要去完成这个算法的优化,这样才是真正可以掌握这个算法啦,那到底是怎么做呢?我们要怎么去开始做优化?不了解的小伙伴一起来看下吧!

下面通过一组实例方法教大家哦~

问题描述

一个名为Robby的机器人生活在一个充满垃圾的二维网格世界中,周围有4堵墙(如下图所示)。这个项目的目标是发展一个控制策略,使他能够有效地捡垃圾,而不是撞墙。

问题图片所示:

涉及方法

任何GA的优化步骤如下:

l生成问题初始随机解的“种群”

l个体的“拟合度”是根据它解决问题的程度来评估的

l最合适的解决方案进行“繁殖”并将“遗传”物质传递给下一代的后代

l重复第2步和第3步,直到我们得到一组优化的解决方案、

应用的遗传算法代码展示:

在下面的代码中,我们生成一个初始的机器人种群,让自然选择来运行它的过程。我应该提到的是,当然有更快的方法来实现这个算法(例如利用并行化)。

#初始种群
pop=[Robot()forxinrange(pop_size)]
results=[]

#执行进化
foriintqdm(range(num_gen)):
scores=np.zeros(pop_size)

#遍历所有机器人
foridx,robinenumerate(pop):
#运行垃圾收集模拟并计算拟合度
score=rob.simulate(iter_per_sim,moves_per_iter)
scores[idx]=score

results.append([scores.mean(),scores.max()])#保存每一代的平均值和值

best_robot=pop[scores.argmax()]#保存最好的机器人

#限制那些能够交配的机器人的数量
inds=np.argpartition(scores,-num_breeders)[-num_breeders:]#基于拟合度得到顶级机器人的索引
subpop=[]
foridxininds:
subpop.append(pop[idx])
scores=scores[inds]

#平方并标准化
norm_scores=(scores-scores.min())**2
norm_scores=norm_scores/norm_scores.sum()

#创造下一代机器人
new_pop=[]
forchildinrange(pop_size):
#选择拟合度优秀的父母
p1,p2=np.random.choice(subpop,p=norm_scores,size=2,replace=False)
new_pop.append(Robot(p1.dna,p2.dna))

pop=new_pop

效果展示:

根据以上内容,大家也可以清晰看到,使用遗传算法去做优化的神奇内容,不仅是可以面对冰冷的代码组,还是以上偏生物的内容,使用遗传算法统统可以实现,大家如果感兴趣的话,不妨也试试哈~